I’m currently working with a dataset that has the following structure:
time S1 S2 S3 S4 S5 \
0 0.000000 539.003281 0.993903 1033.296087 847.307383 1.219820
1 0.009975 539.003281 0.994111 1033.296468 847.306651 1.220583
2 0.020127 539.003281 0.994742 1033.298021 847.305112 1.221355
3 0.028523 539.003281 0.994617 1033.300754 847.303250 1.221988
4 0.035569 539.003281 0.994054 1033.304396 847.301288 1.222514
… … … … … … …
57996 499.963557 539.003053 0.993961 1031.312946 847.487703 1.217045
57997 499.974002 539.003054 0.994419 1031.119268 847.486371 1.217833
57998 499.981499 539.003054 0.994068 1030.985983 847.484937 1.218404
57999 499.988995 539.003054 0.993907 1030.857807 847.483105 1.218977
58000 499.995820 539.003055 0.993811 1030.745792 847.481095 1.219500
S6 S7 S8
0 434.040605 159.445996 1.196984e+09
1 434.040634 159.445989 1.197189e+09
2 434.040727 159.445973 1.197441e+09
3 434.040865 159.445953 1.197659e+09
4 434.041031 159.445933 1.197849e+09
… … … …
57996 434.000702 159.453090 1.195325e+09
57997 433.999854 159.452497 1.195681e+09
57998 433.999347 159.452058 1.195936e+09
57999 433.998927 159.451606 1.196194e+09
58000 433.998620 159.451184 1.196430e+09
S1 S2 S3 S4 S5 \
count 58001.000000 58001.000000 58001.000000 58001.000000 58001.000000
mean 539.003016 0.994206 1033.293424 847.305469 1.219500
std 0.000427 0.000309 2.552520 0.128927 0.008623
min 539.000167 0.993811 1029.127139 847.030722 1.207305
25% 539.003061 0.993945 1030.761892 847.177030 1.210877
50% 539.003073 0.994067 1033.293851 847.304607 1.219500
75% 539.003126 0.994418 1035.861418 847.434463 1.228123
max 539.003325 0.994858 1038.649413 847.489982 1.231695
S6 S7 S8
count 58001.000000 58001.000000 5.800100e+04
mean 434.039444 159.446159 1.196938e+09
std 0.028477 0.008751 3.936919e+06
min 433.998128 159.432551 1.191369e+09
25% 434.011303 159.437825 1.193002e+09
50% 434.039509 159.446069 1.196934e+09
75% 434.067880 159.454050 1.200868e+09
max 434.112882 159.499354 1.202540e+09
The dataset includes time series like S1, S2, S3, and others. However, this data is not MEG, EEG, or iEEG, and I am unsure if the mne-connectivity package would apply to my dataset.
I have a few specific questions:
-
Would scaling and normalizing my data be necessary, and if so, what method would you recommend (e.g., min-max, z-scaling)?
-
Given that my data isn’t in the EEG/MEG domain, what would be the definition of “event” and “epoch” for my dataset?
-
Are there any specific methods or preprocessing steps (such as using a linear model like the auto-regressive model) that you would suggest based on the characteristics of my dataset?