- MNE version: 1.0.1
- operating system: Windows 10
ALICE, BOB = 0, 1
[alice_files, bob_files] = fetch_data(subjects=[ALICE, BOB], recording=[1])
raw_train = mne.io.read_raw_edf(alice_files[0], stim_channel='Event marker',
misc=['Temp rectal'])
annot_train = mne.read_annotations(alice_files[1])
raw_train.set_annotations(annot_train, emit_warning=False)
# plot some data
# scalings were chosen manually to allow for simultaneous visualization of
# different channel types in this specific dataset
raw_train.plot(start=60, duration=60,
scalings=dict(eeg=1e-4, resp=1e3, eog=1e-4, emg=1e-7,
misc=1e-1))
I want to know what Alice’s [0] and [1] mean. And what are the criteria for setting annotations?