The objective is to set montage mne.EvokedArray, for an EEG recording using emotive 14 channels.
The 14 channels are
AF3,AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1 and O2
Since the montage is accoridng to the standard 10-20. I reckon the montage can be extracted via
standard_1020_montage = mne.channels.make_standard_montage('standard_1020')
and create info
as below
fake_info = mne.create_info(ch_names=standard_1020_montage.ch_names, sfreq=250.,
ch_types='eeg')
However, there are 94 channels based on the standard_1020_montage
and as expected, running the following
import numpy as np
from matplotlib import pyplot as plt
import mne
import pandas as pd
standard_1020_montage = mne.channels.make_standard_montage('standard_1020')
standard_1020_montage.plot()
fake_info = mne.create_info(ch_names=standard_1020_montage.ch_names, sfreq=250.,
ch_types='eeg')
rng = np.random.RandomState(0)
n_channels=14
data = rng.normal(size=(1, n_channels)) * 1e-6
df=pd.DataFrame(data, columns=['AF3','AF4', 'F3', 'F4', 'F7', 'F8', 'FC5', 'FC6',
'P7', 'P8', 'T7', 'T8', 'O1', 'O2'])
fake_evoked = mne.EvokedArray(df.to_numpy().T, fake_info)
fake_evoked.set_montage(standard_1020_montage)
Return an error
ValueError: Info (94) and data (14) must have same number of channels.
May I know at which step should I drop the other 80 channels, to avoid this kind of error