**After converting raw EEG signals into epochs, I converted epochs into the panda DataFrame. The data frame consists of 110 columns. These columns are the channel names corresponding to the standard montage GSN-HydroCel-129.
For optimization purpose, I want to reduce the columns from 110 to 10. How can I achieve that?
Any help will be highly appreciated. Thank you!
**
- MNE-Python version: 0.19.2
- operating system: Google Colab
epochs = mne.Epochs(raw, evs, event_id, tmin, tmax, proj=True,
picks=('eeg'), baseline=(None, 0.), preload=True)
epochs.pick_types(eeg=True, exclude='bads')
df = epochs.to_data_frame(scalings=dict(eeg=1, mag=1, grad=1))
print(df)
PS: The picture does not capture all the columns.