- MNE version: e.g. 0.24.0
Hey guys!
I have a naive question in this tutorial:
https://mne.tools/dev/auto_examples/decoding/decoding_time_generalization_conditions.html?highlight=generalizingestimator
specifically in this part:
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver='liblinear') # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring='roc_auc', n_jobs=None,
verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs['Left'].get_data(),
y=epochs['Left'].events[:, 2] > 2)
scores = time_gen.score(X=epochs['Right'].get_data(),
y=epochs['Right'].events[:, 2] > 2)
my question is will the data of the test set epochs['Right'].get_data()
will be standardized using StandardScaler()
in clf or only the training data epochs['Left'].get_data()
set will be standardized?