Hi all,
I get the following error when I try the following using my constructed ROI labels : Any pointers would be much appreciated 
thanks// dave
script snippet:
print __doc__
import mne
from mne import fiff
from mne.minimum_norm import source_band_induced_power
epochs=mne.read_epochs(fname_epoched, proj= True)
bands = dict(theta= [3, 8], alpha=[9, 11], beta=[18, 22], gamma=[30, 80])
stcs = source_band_induced_power(epochs, label, inverse_operator, bands, n_cycles=2,
use_fft=False, n_jobs=1)
for b, stc in stcs.iteritems():
stc.save('induced_power_%s' % b)
###############################################################################
# plot mean power
import matplotlib.pyplot as plt
plt.plot(stcs['alpha'].times, stcs['alpha'].data.mean(axis=0), label='Alpha')
plt.plot(stcs['beta'].times, stcs['beta'].data.mean(axis=0), label='Beta')
plt.plot(stcs['beta'].times, stcs['beta'].data.mean(axis=0), label='Theta')
plt.plot(stcs['beta'].times, stcs['beta'].data.mean(axis=0), label='Gamma')
plt.xlabel('Time (ms)')
plt.ylabel('Power')
plt.legend()
plt.title('Mean source induced power')
plt.show()
error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-11-2aeed705510d> in <module>()
1 bands = dict(theta=[3, 8], alpha=[9, 11], beta=[18, 22], gamma=[30, 80])
2
----> 3 BFstcs = source_band_induced_power(epochs, label, inverse_operator, bands, n_cycles=2, use_fft=False, n_jobs=1)
/home/leitman/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/mne-0.7.1-py2.7.egg/mne/utils.pyc in dec(*args, **kwargs)
378 return ret
379 else:
--> 380 return function(*args, **kwargs)
381
382 # set __wrapped__ attribute so ?? in IPython gets the right source
/home/leitman/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/mne-0.7.1-py2.7.egg/mne/minimum_norm/time_frequency.pyc in source_band_induced_power(epochs, inverse_operator, bands, label, lambda2, method, nave, n_cycles, df, use_fft, decim, baseline, baseline_mode, pca, n_jobs, verbose)
84
85 frequencies = np.concatenate([np.arange(band[0], band[1] + df / 2.0, df)
---> 86 for _, band in bands.iteritems()])
87
88 powers, _, vertno = _source_induced_power(epochs,
_______________________________________________
Mne_analysis mailing list
Mne_analysis at nmr.mgh.harvard.edu
https://mail.nmr.mgh.harvard.edu/mailman/listinfo/mne_analysis
The information in this e-mail is intended only for the person to whom it is
addressed. If you believe this e-mail was sent to you in error and the e-mail
contains patient information, please contact the Partners Compliance HelpLine at
http://www.partners.org/complianceline . If the e-mail was sent to you in error
but does not contain patient information, please contact the sender and properly
dispose of the e-mail.