system  
                (system)
               
                 
              
                  
                    April 14, 2020,  1:36pm
                   
                   
              1 
               
             
            
              External Email - Use Caution
Dear experts: 
I am trying to run a tutorial recommended. https://mne.tools/dev/auto_tutorials/preprocessing/plot_20_rejecting_bad_data.html#rejecting-epochs-based-on-channel-amplitude 
My data is not from the tutorial. It is an EEG. Also I have this outputs. Of course I use evoked = epochs.average() and it says less than one epoch. What can I do?
print(events)
 
 
 
[[     0      0  65536] 
[ 18275      0    128] 
[ 19387      0      2] 
[ 20422      0      2] 
[ 32156      0    128] 
[ 46029      0    128] 
[ 46873      0      2] 
[ 47522      0      4] 
[ 72924      0    128] 
[ 73666      0      2] 
[ 74230      0      2] 
[ 92717      0    128] 
[ 94025      0      2] 
[ 94590      0      2] 
[108211      0    128] 
[109532      0      2] 
[110110      0      4] 
[130866      0    128] 
[131605      0      4] 
[132900      0      2] 
[156301      0    128] 
[157153      0      2] 
[157843      0      4] 
[176353      0    128] 
[177182      0      2] 
[177821      0      2] 
[191436      0    128] 
[192495      0      4] 
[193129      0      2] 
[233638      0    128] 
[234323      0      4] 
[234936      0      4] 
[248375      0    128] 
[249218      0      2] 
[249817      0      2] 
[255773      0    128] 
[256493      0      2] 
[257060      0      4] 
[286302      0    128] 
[287009      0      4] 
[287601      0      2] 
[320684      0    128] 
[321413      0      4] 
[340579      0    128] 
[341369      0      4] 
[342650      0      2] 
[383286      0    128] 
[384166      0      2] 
[384810      0      2] 
[406476      0    128] 
[407297      0      2] 
[407956      0      4] 
[409017      0      2] 
[444348      0    128] 
[445107      0      2] 
[445683      0      4] 
[446969      0      2] 
[482043      0    128] 
[482761      0      2] 
[483421      0      2] 
[521536      0    128] 
[522365      0      2] 
[523009      0      2] 
[535415      0    128] 
[536091      0      4] 
[536691      0      2] 
[573609      0    128] 
[574341      0      4] 
[574916      0      2] 
[588192      0    128] 
[588973      0      4] 
[589524      0      2] 
[611318      0    128] 
[612110      0      2] 
[612703      0      4] 
[613416      0      2] 
[634153      0    128] 
[635029      0      2] 
[635592      0      2] 
[636193      0      2] 
[662819      0    128] 
[663674      0      2] 
[664355      0      4] 
[665003      0      2] 
[677292      0    128] 
[678266      0      2] 
[678926      0      2] 
[679619      0      2]]
epochs = mne.Epochs(raw, events, event_id=dict(aud=65536, vis=2, aud2=4, vis2=128), tmin=-0.2, tmax=0.5,reject=dict(eeg=100e-6), flat=dict(eeg=1e-6),preload=True)
 
 
 
88 matching events found 
Applying baseline correction (mode: mean) 
Not setting metadata 
0 projection items activated 
Loading data for 88 events and 180 original time points ...
?
88 bad epochs dropped
Sincerely, 
Andrade. 
-------------- next part -------------- 
An HTML attachment was scrubbed... 
URL: http://mail.nmr.mgh.harvard.edu/pipermail/mne_analysis/attachments/20200414/08c06604/attachment-0001.html 
             
            
               
               
               
            
            
           
          
            
              
                system  
                (system)
               
              
                  
                    April 14, 2020,  1:38pm
                   
                   
              2 
               
             
            
              External Email - Use Caution
You can look at `epochs.drop_log` or `epochs.plot_drop_log` to see why. See 
for example:
https://mne.tools/dev/auto_tutorials/epochs/plot_10_epochs_overview.html#creating-epoched-data-from-a-raw-object 
Eric
             
            
               
               
               
            
            
           
          
            
              
                system  
                (system)
               
              
                  
                    April 15, 2020,  4:06pm
                   
                   
              3 
               
             
            
              External Email - Use Caution
yes I did (epochs.plot_drop_log) but I just see a lot of columns with 100%. From where I deduce all channels are dropped. I don?t know what explanation for that.
        External Email - Use Caution
You can look at `epochs.drop_log` or `epochs.plot_drop_log` to see why. See for example:
https://mne.tools/dev/auto_tutorials/epochs/plot_10_epochs_overview.html#creating-epoched-data-from-a-raw-object 
Eric
        External Email - Use Caution
Dear experts: 
I am trying to run a tutorial recommended. Page Redirection 
My data is not from the tutorial. It is an EEG. Also I have this outputs. Of course I use evoked = epochs.average() and it says less than one epoch. What can I do?
print(events)
 
 
 
[[     0      0  65536] 
[ 18275      0    128] 
[ 19387      0      2] 
[ 20422      0      2] 
[ 32156      0    128] 
[ 46029      0    128] 
[ 46873      0      2] 
[ 47522      0      4] 
[ 72924      0    128] 
[ 73666      0      2] 
[ 74230      0      2] 
[ 92717      0    128] 
[ 94025      0      2] 
[ 94590      0      2] 
[108211      0    128] 
[109532      0      2] 
[110110      0      4] 
[130866      0    128] 
[131605      0      4] 
[132900      0      2] 
[156301      0    128] 
[157153      0      2] 
[157843      0      4] 
[176353      0    128] 
[177182      0      2] 
[177821      0      2] 
[191436      0    128] 
[192495      0      4] 
[193129      0      2] 
[233638      0    128] 
[234323      0      4] 
[234936      0      4] 
[248375      0    128] 
[249218      0      2] 
[249817      0      2] 
[255773      0    128] 
[256493      0      2] 
[257060      0      4] 
[286302      0    128] 
[287009      0      4] 
[287601      0      2] 
[320684      0    128] 
[321413      0      4] 
[340579      0    128] 
[341369      0      4] 
[342650      0      2] 
[383286      0    128] 
[384166      0      2] 
[384810      0      2] 
[406476      0    128] 
[407297      0      2] 
[407956      0      4] 
[409017      0      2] 
[444348      0    128] 
[445107      0      2] 
[445683      0      4] 
[446969      0      2] 
[482043      0    128] 
[482761      0      2] 
[483421      0      2] 
[521536      0    128] 
[522365      0      2] 
[523009      0      2] 
[535415      0    128] 
[536091      0      4] 
[536691      0      2] 
[573609      0    128] 
[574341      0      4] 
[574916      0      2] 
[588192      0    128] 
[588973      0      4] 
[589524      0      2] 
[611318      0    128] 
[612110      0      2] 
[612703      0      4] 
[613416      0      2] 
[634153      0    128] 
[635029      0      2] 
[635592      0      2] 
[636193      0      2] 
[662819      0    128] 
[663674      0      2] 
[664355      0      4] 
[665003      0      2] 
[677292      0    128] 
[678266      0      2] 
[678926      0      2] 
[679619      0      2]]
epochs = mne.Epochs(raw, events, event_id=dict(aud=65536, vis=2, aud2=4, vis2=128), tmin=-0.2, tmax=0.5,reject=dict(eeg=100e-6), flat=dict(eeg=1e-6),preload=True)
 
 
 
88 matching events found 
Applying baseline correction (mode: mean) 
Not setting metadata 
0 projection items activated 
Loading data for 88 events and 180 original time points ...
?
88 bad epochs dropped
Sincerely, 
Andrade.
             
            
               
               
               
            
            
           
          
            
              
                system  
                (system)
               
              
                  
                    April 15, 2020,  4:07pm
                   
                   
              4 
               
             
            
              External Email - Use Caution
I just saw that you can do epochs out of raw, events, and tmin tax
        External Email - Use Caution
You can look at `epochs.drop_log` or `epochs.plot_drop_log` to see why. See for example:
https://mne.tools/dev/auto_tutorials/epochs/plot_10_epochs_overview.html#creating-epoched-data-from-a-raw-object 
Eric
        External Email - Use Caution
Dear experts: 
I am trying to run a tutorial recommended. Page Redirection 
My data is not from the tutorial. It is an EEG. Also I have this outputs. Of course I use evoked = epochs.average() and it says less than one epoch. What can I do?
print(events)
 
 
 
[[     0      0  65536] 
[ 18275      0    128] 
[ 19387      0      2] 
[ 20422      0      2] 
[ 32156      0    128] 
[ 46029      0    128] 
[ 46873      0      2] 
[ 47522      0      4] 
[ 72924      0    128] 
[ 73666      0      2] 
[ 74230      0      2] 
[ 92717      0    128] 
[ 94025      0      2] 
[ 94590      0      2] 
[108211      0    128] 
[109532      0      2] 
[110110      0      4] 
[130866      0    128] 
[131605      0      4] 
[132900      0      2] 
[156301      0    128] 
[157153      0      2] 
[157843      0      4] 
[176353      0    128] 
[177182      0      2] 
[177821      0      2] 
[191436      0    128] 
[192495      0      4] 
[193129      0      2] 
[233638      0    128] 
[234323      0      4] 
[234936      0      4] 
[248375      0    128] 
[249218      0      2] 
[249817      0      2] 
[255773      0    128] 
[256493      0      2] 
[257060      0      4] 
[286302      0    128] 
[287009      0      4] 
[287601      0      2] 
[320684      0    128] 
[321413      0      4] 
[340579      0    128] 
[341369      0      4] 
[342650      0      2] 
[383286      0    128] 
[384166      0      2] 
[384810      0      2] 
[406476      0    128] 
[407297      0      2] 
[407956      0      4] 
[409017      0      2] 
[444348      0    128] 
[445107      0      2] 
[445683      0      4] 
[446969      0      2] 
[482043      0    128] 
[482761      0      2] 
[483421      0      2] 
[521536      0    128] 
[522365      0      2] 
[523009      0      2] 
[535415      0    128] 
[536091      0      4] 
[536691      0      2] 
[573609      0    128] 
[574341      0      4] 
[574916      0      2] 
[588192      0    128] 
[588973      0      4] 
[589524      0      2] 
[611318      0    128] 
[612110      0      2] 
[612703      0      4] 
[613416      0      2] 
[634153      0    128] 
[635029      0      2] 
[635592      0      2] 
[636193      0      2] 
[662819      0    128] 
[663674      0      2] 
[664355      0      4] 
[665003      0      2] 
[677292      0    128] 
[678266      0      2] 
[678926      0      2] 
[679619      0      2]]
epochs = mne.Epochs(raw, events, event_id=dict(aud=65536, vis=2, aud2=4, vis2=128), tmin=-0.2, tmax=0.5,reject=dict(eeg=100e-6), flat=dict(eeg=1e-6),preload=True)
 
 
 
88 matching events found 
Applying baseline correction (mode: mean) 
Not setting metadata 
0 projection items activated 
Loading data for 88 events and 180 original time points ...
?
88 bad epochs dropped
Sincerely, 
Andrade.