[ANN] MNE-Python 0.8 Release

Dear list,

we are pleased to announce the new 0.8 release of MNE-python.

This release comes as usual with a lot of new features and usability
improvements thanks to our growing number of contributors.

A few highlights:

- ?mne report?, a new tool to create interactive HTML reports for reviewing
and sharing data analysis results. Details can be found here:
http://martinos.org/mne/stable/mne_report_tutorial.html

and an example at https://dl.dropboxusercontent.com/u/3915954/report.html

- visualize reconstructed electromagnetic fields on helmet and head surface.

- improved support for processing and visualizing EEG data in sensor space.

- new function for reading EGI EEG data.

- official Python 3 support (except 3D plotting)

- support for constructing MNE objects from arbitrary array inputs (allows
working with data stored e.g. in .mat files)

- ICA has been rewritten, we added the infomax and extended infomax
algorithms and lots of new functionality to automatically identify bad
components and visualize data quality.

- redesign sensor space time-frequency API with new somatosensory MEG
dataset with nice time-frequency content (see
http://martinos.org/mne/stable/auto_examples/time_frequency/plot_time_frequency_sensors.html
)

- functionality to visualize cross-talk and point-spread functions of
linear inverse solvers

- new functionality for regression analysis

http://martinos.org/mne/stable/auto_examples/stats/plot_sensor_regression.html

- functions to plot BEM segmentations and coregistration results to assess
their quality

http://martinos.org/mne/stable/auto_examples/plot_bem_contour_mri.html

- realtime time code to communicate with Fieldtrip buffer

The full list of the improvements coming in this release is at

http://martinos.org/mne/whats_new.html

Please note some changes such as the fact that the mne.fiff module is
deprecated and replaced by mne.io and functions directly via the mne
namespace (e.g. mne.read_evokeds).

To install the latest release the following command should do the job:

pip install mne --upgrade --user

As usual we welcome bug reports, feature requests, critics and even more
contributions.

Some links:

- https://github.com/mne-tools/mne-python (code + readme on how to install)

- http://martinos.org/mne (full MNE documentation)

- http://martinos.org/mne/auto_examples/index.html (the Python examples)

- http://martinos.org/mne/python_reference.html (Python functions
documentation)

- http://mne-tools.github.io/mne-python-intro-slides/ (slides)

- http://martinos.org/mne/python_tutorial.html (an

introduction/tutorial to basic mne-python)

Follow us on Twitter: https://twitter.com/mne_python

Regards,

The MNE-Python developers

People who contributed to this release with their number of commits:

  418 Denis A. Engemann

  284 Alexandre Gramfort

  242 Eric Larson

  155 Christian Brodbeck

  144 Mainak Jas

   49 Martin Billinger

   49 Andrew Dykstra

   44 Tal Linzen

   37 Dan G. Wakeman

   36 Martin Luessi

   26 Teon Brooks

   20 Cathy Nangini

   15 Hari Bharadwaj

   15 Roman Goj

   10 Ross Maddox

    9 Marmaduke Woodman

    8 Praveen Sripad

    8 Tanay

    8 Roan LaPlante

    5 Saket Choudhary

    4 Nick Ward

    4 Mads Jensen

    3 Olaf Hauk

    3 Brad Buran

    2 Daniel Strohmeier

    2 Federico Raimondo

    2 Alan Leggitt

    1 Jean-Remi King

    1 Matti Hamalainen
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mail.nmr.mgh.harvard.edu/pipermail/mne_analysis/attachments/20140731/06d85df8/attachment.html